Photo by Raphaël Biscaldi on Unsplash Orbital adalah wilayah atau daerah dalam ruang di sekitar inti atom yang memiliki kemungkinan tertinggi untuk bisa menemukan elektron. Pada penyusunan diagram orbital, sebuah elektron disimbolkan dengan anak panah menghadap ke atas yang melambangkan elektron dengan spin +½, atau menghadap ke bawah yang melambangkan elektron dengan spin -½. Untuk menandai distribusi orbital dalam atom, anak panah ini diletakkan pada garis horizontal, dalam lingkaran, atau umumnya di dalam kotak. Diagram orbital digunakan untuk memudahkan penentuan nilai bilangan kuantum, yaitu bilangan kuantum magnetik dan bilangan kuantum spin. Lalu bagaimana dengan bilangan kuantum utama dan bilangan kuantum azimut? Keduanya dapat ditentukan dengan mudah, hanya dengan melihat konfigurasi elektronnya. Artikel ini akan membahas langkah-langkah dan aturan dalam penyusunan diagram orbital. Langkah-langkah Penyusunan Diagram Orbital 1. Tuliskan konfigurasi elektron berdasarkan aturan Aufbau. Aturan Aufbau berprinsip bahwa pengisian elektron pada suatu orbital dimulai dari tingkat energi terendah ke tingkat energi yang lebih tinggi. Orbital s mempunyai tingkat energi terendah, dan berturut-turut makin tinggi untuk orbital p, d, dan f. Pengisian elektron pada orbital dapat digambarkan dengan diagram berikut. Sumber Gambar Setiap subkulit memiliki jumlah maksimum elektron, yakni Subkulit s maksimal berisi 2 elektron Subkulit p maksimal berisi 6 elektron Subkulit d maksimal berisi 10 elektron Subkulit f maksimal berisi 14 elektron Dengan mengacu pada gambar dan keterangan di atas, maka kita bisa menuliskan urutan konfigurasi elektron sebagai berikut 1s2 2s2 2p66 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 …. dan seterusnya. 2. Orbital akan dilambangkan dengan dengan kotak. Orbital s = 1 kotak, orbital p = 3 kotak, orbital d = 5 kotak dan orbital f = 7 kotak. Sumber 3. Isi kotak orbital dengan elektron-elektron yang dimiliki oleh masing-masing sub kulit dengan tanda panah ke atas atau ke bawah. Satu kotak diisi maksimum 2 elektron. Orbital-orbital yang memiliki energi yang sama akan dilambangkan dengan sekelompok kotak yang bersisian. Sedangkan orbital-orbital dengan tingkat energi berbeda, digambarkan dengan kotak yang terpisah. Pada pengisian orbital elektron ada beberapa aturan yang harus diikuti, yakni A. Asas Larangan Pauli Asas larangan Pauli menyatakan bahwa “Tidak boleh ada dua elektron dalam suatu atom yang memiliki empat bilangan kuantum yang sama. Orbital yang sama akan memiliki bilangan kuantum n, l, dan m yang sama. Yang membedakannya hanya bilangan kuantum spin s.” Hal ini berarti bahwa setiap orbital maksimum berisi dua elektron dengan arah spin yang berlawanan. B. Aturan Hund Seorang ahli fisika dari Jerman, Friedrich Hund 1927 mengemukakan aturan pengisian elektron pada orbital yaitu “Orbital-orbital dengan energi yang sama, masing-masing diisi terlebih dahulu oleh satu elektron dengan arah spin yang sama, kemudian elektron akan memasuki orbital-orbital secara urut dengan arah spin berlawanan, atau dengan kata lain, dalam subkulit yang sama, masing-masing orbital terisi satu elektron dengan arah panah yang sama, kemudian elektron yang tersisa diisikan sebagai elektron pasangannya dengan arah panah yang berlawanan”. Untuk memahami pernyataan di atas, mari kita coba perhatikan contoh diagram elektron berikut ini Sumber Bila kita perhatikan diagram orbital unsur S pada konfigurasi 3p4, tiga elektron ditempatkan terlebih dahulu dengan gambar tanda panah ke atas, kemudian 1 elektron yang tersisa digambarkan dengan tanda panah ke bawah. Hal ini dilakukan mengikuti aturan Hund. Nah itulah penjelasan tentang aturan dalam membuat diagram orbital. Dengan mengikuti aturan di atas, kamu bisa menuliskan diagram orbital dengan mudah. Apakah kamu memiliki pertanyaan mengenai hal ini? Silakan tuliskan pertanyaan kamu di kolom komentar ya. Dan jangan lupa untuk share pengetahuan ini. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. You May Also LikeTingkatEnergi Total Elektron. Untuk atom berelektron banyak dengan nomor atom Z, maka tingkat energi total elektronnya pada suatu orbit dapat dinyatakan dengan menggunakan persamaan rumus berikut: En = - (13,6 x Z2)/(n2) Dengan keterangan. En = tingkat energi total elektron, eV. n = bilangan kuantum utama. Z = nomor atom Konfigurasi elektron adalah susunan penyebaran pengisian elektron-elektron dalam. Seperti yang telah dibahas dalam bab Struktur Atom, di dalam atom terdapat partikel subatomik neutron dan proton yang terdapat pada inti atom, dan elektron yang bergerak mengelilingi inti atom tersebut pada kulit-kulit elektron level-level energi yang tertentu. Lintasan peredaran elektron ini disebut juga kulit elektron. Kulit pertama yang terdekat dengan inti atom disebut kulit K, kemudian kulit kedua disebut kulit L, kulit ketiga disebut kulit M, dan seterusnya berurut berdasarkan alfabet sebagaimana kulit menjauhi inti atom. Kulit elektron ini juga dapat dinyatakan dengan bilangan kuantum utama n, dimulai dari 1 untuk kulit K, 2 untuk kulit L, dan seterusnya. Semakin besar nilai n, semakin jauh kulit elektron dari inti atom dan semakin besar energi elektron yang beredar di kulit terkait. Elektron-elektron akan mengisi kulit-kulit elektron pada atom dimulai dari kulit K yang merupakan level energi terendah. Setiap kulit elektron hanya dapat terisi sejumlah tertentu elektron. Jumlah maksimum elektron yang dapat terisi pada kulit elektron ke-n adalah 2n2. Namun, jumlah maksimum elektron pada kulit terluar dari suatu atom adalah 8. Lebih jelasnya, perhatikan ilustrasi pada Gambar 1 dan Tabel 1. Gambar 1. Ilustrasi konfigurasi elektron atom Li, B, O, Ne, Na, dan K berdasarkan kulit elektron Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Untuk atom unsur golongan transisi, konfigurasi elektron nya tidak dapat ditentukan dengan metode penentuan berdasarkan kulit elektron untuk atom unsur golongan utama seperti di atas. Penentuan konfigurasi elektron atom unsur golongan transisi didasarkan pada orbital atom. Setiap orbital dalam atom akan ditandai dengan satu set nilai bilangan kuantum utama n, bilangan kuantum azimuth l, dan bilangan kuantum magnetik m yang khusus. Lalu, setiap orbital maksimum terisi 2 elektron, yang masing-masing memiliki bilangan kuantum spin s tersendiri. Keempat bilangan kuantum tersebut digunakan untuk men-deskripsi’-kan energi elektron, sebagaimana seperti alamat’ elektron dalam sebuah atom untuk menemukan keberadaan elektron dalam atom tersebut. Bilangan kuantum utama n mendeskripsikan ukuran dan tingkat energi orbital. Nilai n yang diperbolehkan adalah bilangan bulat positif. Bilangan kuantum azimuth l mendeskripsikan bentuk orbital. Nilai l yang diperbolehkan adalah bilangan bulat dari 0 hingga n−1. Bilangan kuantum magnetik m mendeskripsikan orientasi orbital. Nilai m yang diperbolehkan adalah bilangan bulat dari −l hingga +l. Bilangan kuantum spin s mendeskripsikan arah spin elektron dalam orbital. Nilai s yang diperbolehkan adalah +½ atau−½. Aturan penentuan konfigurasi elektron berdasarkan orbital 1. Asas Aufbau Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada Gambar 2. Gambar 2. Urutan tingkat energi subkulit Sumber Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. 2. Asas larangan Pauli Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan. 3. Kaidah Hund Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak. Gambar 3. Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama Sumber Gilbert, Thomas al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. Contoh Soal Konfigurasi Elektron Tentukan konfigurasi elektron dan jumlah elektron dalam setiap kulit elektron atom unsur berikut. a. Ni Z = 28 b. SrZ = 38 Jawab Ni Z = 28 1s2 2s2 2p6 3s2 3p6 4s2 3d8 atau [Ar] 4s2 3d8; K = 2 ; L = 8 ; M = 16 ; N = 2 Sr Z = 38 1s2 2s2 2p6 3s2 3p6 4s2 3d104p6 5s2atau [Kr] 5s2; K = 2 ; L = 8 ; M = 18 ; N = 8 ; O = 2 Berdasarkan eksperimen, terdapat anomali konfigurasi elektron dari aturan-aturan di atas. Subkulit d memiliki tendensi untuk terisi setengah penuh atau terisi penuh. Contohnya, Cr Z = 24 [Ar] 4s1 3d5 lebih stabil dibanding [Ar] 4s2 3d4 ; dan juga Cu Z = 29 [Ar] 4s1 3d10 lebih stabil dibanding [Ar] 4s2 3d9. Untuk ion monoatomik seperti Na+, K+, Ca2+, S2-, Br– dapat ditentukan dari konfigurasi elektron atom netralnya terlebih dahulu. Pada kation ion bermuatan positif monoatomik Ax+ yang bermuatan x+, sebanyak x elektron dilepas dikurangi dari kulit elektron terluar atom netral A. Pada anion ion bermuatan negatif monoatomik By– yang bermuatan y-, sebanyak y elektron ditangkap ditambahkan pada orbital level energi terendah yang masih belum penuh oleh elektron. Referensi Konfigurasi Elektron – Cracolice, Mark S. & Peters, Edward I. 2011. Introductory Chemistry An Active Learning Approach 4th edition. California Brooks/Cole, Cengage Learning. – Earl, Bryan & Wilford, Doug. 2014. Cambridge IGCSE Chemistry 3rd edition. London Hodder Education. – Gilbert, Thomas N. et al. 2012. Chemistry The Science in Context 3rd edition. New York W. W. Norton & Company, Inc. – McMurry, John. et al. of General, Organic, and Biological Chemistry 7th edition. Illinois Pearson Education, Inc. – Petrucci, Ralph H. et al. 2011. General Chemistry Principles and Modern Applications 10th edition. Toronto Pearson Canada Inc. – Purba, Michael. 2006. Kimia 1A untuk SMA Kelas X. Jakarta Erlangga. – Purba, Michael. 2006. Kimia 2A untuk SMA Kelas XI. Jakarta Erlangga. – Silberberg, Martin S. 2009. Chemistry The Molecular Nature of Matter and Change5th edition. New York McGraw Hill – Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry Structure and Dynamics 5th edition. New Jersey John Wiley & Sons, Inc. Judul artikel Konfigurasi Elektron Kontributor Nirwan Susianto, Alumni Kimia UI Materi lainnya Struktur Atom Reaksi Reduksi Oksidasi Stoikiometri 1ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya : 1. Massa atom merupakan massa dari atom dalam satuan massa atom (sma). Secara Mikro atom & molekul . Model atom Bohr Kelebihan atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat
Untukatom berelektron banyak dengan nomor atom Z, maka tingkat energi total elektronnya pada suatu orbit dapat dinyatakan dengan menggunakan persamaan rumus berikut: E n = - (13,6 x Z 2 )/ (n 2) Dengan keterangan E n = tingkat energi total elektron, eV n = bilangan kuantum utama Z = nomor atom Bilangan Kuantum Orbital l, Bilangan Kuantum AzimuthBerandaDiagram tingkat energi untuk atom yang berelektron...PertanyaanDiagram tingkat energi untuk atom yang berelektron banyak menurut aturan Aufbau adalah ....Diagram tingkat energi untuk atom yang berelektron banyak menurut aturan Aufbau adalah .... 1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p 1s < 2s = 3s < 3p = 4p < 3d 1s = 2s < 2p < 3s = 4s < 3d 1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p ISI. SolichahMaster TeacherJawabanjawaban yang tepat adalah yang tepat adalah B. PembahasanTingkat energi setiap subkulit pada kulitnya telah disusun sesuai dengan aturan Aufbau. Jadi, jawaban yang tepat adalah energi setiap subkulit pada kulitnya telah disusun sesuai dengan aturan Aufbau. Jadi, jawaban yang tepat adalah B. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Diagramtingkat energi atom berelektron banyak menurut aturan aufbau adalah Konfigurasi Elektron dan Diagram Orbital. Struktur Atom dan Tabel Periodik. Kimia Anorganik. Kimia. ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya 1. Kestabilan atom 2. Spektrum garis pada atom hidrogen deret Lyman, Balmer, Paschen, Brackett, Pfund * Kelemahan Tidak dapat menjelaskan 1. Efek Zeeman yaitu, gejala tambahan garis-garis spektrum jika atom-atom tereksitasi diletakkan dalam medan magnet. 2. Spektrum garis yang dipancarkan oleh atom berelektron banyak. 3. Pada spektrum suatu atom, beberapa garis spektrum memiliki intensitas lebih besar dari garis spektrum yang lain. B. MODEL ATOM MEKANIKA KUANTUM * Dikembangkan oleh Erwin Schrodinger dan Werner Heisenberg * Dikenal dengan Teori Mekanika Kuantum 1. Bilangan kuantum utama n Menentukan besar energi total elektron Energi total elektron atom hidrogen E=− 13,6 n2 eV Energi total elektron ion He+, Li2+ E=− 13,6 ⋅ z 2 n2 z = nomor atom He + → z = 2 Li2+ → z = 3 - Energi total elektron banyak E=− 2. 13,6 ⋅ z ef 2 n2 z ef = nomor atom efektif Jumlah elektron maksimum pada orbit ke-n adalah 2n 2 jadi ∑ e = 2n2 Bilangan Kuantum Orbital/Azimuth Penemu Arnold Sommerfeld → orbit ellips menentukan besar momentum anguler/sudut orbital elektron l = n – 1 jadi l = 0, 1, 2, 3, ... besar momentum sudut L © SMA NEGERI 8 JAKARTA Halaman -1- h h = h 2π 2π h tetapan Planck l makin kecil → L makin kecil bentuk orbit semakin pipih. L = ll + 1 - l=2 l=0 l=1 inti l=3 3. Bilangan kuantum magnetik ml Menunjukkan arah dari momentum sudut orbital ml = − l , ..., 0, ... + l Banyaknya nilai yang diperbolehkan jumlah orbital ml = 2l + 1 - Arah momentum sudut dikuantisasi dengan acuan ke medan magnet luar kuantisasi ruang Lz L z = ml h Contoh l = 2 z 2h h 0 −h L= 22 + 1h = 6h 6h 6h 6h −2 h - 4. 6h Anomali efek Zeeman AEZ pengecualian gejala tambahan garis spektrum yang tidak sesuai dengan jumlah yang diperkirakan. Contoh garis pertama deret Balmer dari atom hidrogen yang menunjukkan sebuah struktur halus oleh Phipps dan Taylor Bilangan Kuantum Spin ms Menunjukkan arah perputaran elektron pada sumbunya Ada 2 nilai, ms = ± 1 2 - Pauli berhasil menjelaskan adanya AEZ penyebab → rotasi tersembunyi Goudsmit & Uhlenbeck → rotasi tersembunyi disebabkan oleh momentum sudut intrinsik momentum sudut spin Besar momentum sudut spin S S = ms ms + 1 h © SMA NEGERI 8 JAKARTA Halaman -2- - Arah vektor momentum sudut spin S z S z = ms h Nama kulit Bilangan kuantum utama n Nama subkulit Bilangan kuantum orbital l Banyak orbital ml = 2l + 1 Jumlah elektron l = 2 × m * K 1 s 0 1 L 2 p 1 3 M 3 d 2 5 N 4 f 3 7 O 5 g 4 9 2 6 10 14 18 KONFIGURASI ELEKTRON Yaitu susunan elektron-elektron dalam atom yang sesuai dengan tingkat energinya. Aturan-aturan 1. Prinsip Aufbau Elektron mengisi orbital dari tingkat energi yang paling rendah sampai yang paling tinggi. Contoh Atom K → z = 19, konfigurasi elektronnya 1s2 2s2 2p6 3s2 3p6 4s1 1s 2s 3s 4s 5s 6s 7s * 2p 3p 5p 5p 6p 3d 4d 5d 6d 4f 5f 2. Aturan Hund • Dalam orbital yang setingkat, elektron-elektron tidak boleh berpasangan sebelum seluruh orbital setingkat terisi oleh sebuah elektron. • Contoh tidak boleh 3. Larangan Pauli dalam satu atom tidak boleh ada elektron yang mempunyai keempat bilangan kuantum yang sama harganya. SPEKTRUM EMISI & ABSORPSI Adanya spektrum menunjukkan adanya tingkat energi. 1. Spektrum Emisi • Dihasilkan dari zat yang memancarkan gelombang elektromagnetik • Dapat diamati denan spektroskop • Ada 3 jenis a. spektrum garis - dihasilkan oleh gas-gas bertekanan rendah yang dipanaskan - terdiri dari garis-garis cahaya monokromatik dengan panjang gelombang tertentu yang merupakan karakteristik dari unsur yang menghasilkan spektrum tersebut © SMA NEGERI 8 JAKARTA Halaman -3- b. c. 2. * spektrum pita - dihasilkan oleh gas dalam keadaan molekuler Contoh gas H2, O2, N2 dan CO - spektrum yang dihasilkan berupa kelompok-kelompok garis yang sangat rapat sehingga membentuk pita-pita. spektrum kontinue - spektrum kontinue terdiri atas cahaya dengan semua panjang gelombang, walaupun dengan intensitas yang berbeda - dihasilkan oleh zat padat, zat cair dan gas yang berpijar Spektrum Absorpsi - terjadi karena penyerapan panjang gelombang tertentu oleh suatu zat terhadap radiasi gelombang elektromagnetik yang memiliki spektrum kontinue - terdiri dari sederetan garis-garis hitam pada spektrum kontinue - Contoh spektrum matahari sepintas spektrum matahari tampak seperti spektrum kontinue, tetapi jika dicermati akan tampak garis-garis gelap terang yang disebut garis-garis Fraunhofer. Hal ini disebabkan cahaya putih dari bagian inti matahari diserap oleh atom-atom atau molekul-molekul gas dalam atmosfer matahari maupun atmosfer bumi. ENERGI IONISASI DAN AFINITAS ELEKTRON Apabila suatu atom menerima energi dari luar yang cukup untuk mengeksitasi elektron melampaui tingkat energi tertinggi, maka elektron tersebut akan meninggalkan atom. Energi ionisasi energi terendah yang dibutuhkan untuk melepaskan sebuah elektron dari ikatan atomnya +13,6 Contoh energi ionisasi atom hidrogen pada kulit ke-n adalah En = eV n2 Ø Energi ionisasi merupakan ukuran kestabilan konfigurasi elektron terluar dari suatu atom Ø Makin besar energi ionisasi, makin sukar atom tersebut untuk melepaskan elektron Ø Dalam satu periode dari kiri ke kanan energi ionisasinya makin besar Ø Dalam satu golongan dari atas ke bawah energi ionisasinya makin § § § Jumlah elektron pada orbit terluar disebut ELEKTRON VALENSI Elektron valensi kurang dari 4 cenderung melepaskan elektron, sedangkan yang lebih dari 4 cenderung menerima elektron Atom-atom yang menangkap elektron membentuk Ion negatif disertai dengan pembebasan sejumlah energi AFINITAS ELEKTRON energi yang dibebaskan pada saat suatu atom menangkap sebuah elektron © SMA NEGERI 8 JAKARTA Halaman -4- MOLEKUL, ZAT PADAT PITA ENERGI A. MOLEKUL molekul terbentuk karena adanya gaya tarik-menarik antara 2 atom atau lebih gaya coulomb Ikatan molekul 1. Ikatan Ion - disebabkan oleh gaya coulomb, atom satu melepas satu elektron terluarnya dan yang lain menerima. - Contoh NaCl + + Na Cl + Na+ + Cl− Na → Na + + e membutuhkan energi Cl + e → Cl− melepaskan energi 2. Ikatan Kovalen - ikatan yang terjadi di antara dua atom dengan memakai satu atau dua elektron bersama. - Contoh H2 H → H+ + e 3. H2 Ikatan Hidrogen - terjadi akibat gaya tarik-menarik elektrostatik kuat antara hidrogen pada satu molekul dengan atom N, O atau F dari molekul lain. B. ZAT PADAT Zat padat terbentuk karena antaratomnya terikat oleh ikatan - ionik garam padat - kovalen intan - Van der Waals H2O padat - hidrogen hidrogen padat - logam 1. Ikatan Van der Waals Ikatan yang terjadi karena gaya tarik-menarik antar dipol H2O dengan H2O, N2 padat, CH4 padat. © SMA NEGERI 8 JAKARTA Halaman -5- 2. Ikatan Logam Ikatan terjadi antara awan elektron dengan ion-ion positif C. PITA ENERGI Elektron-elektron yang mengelilingi inti atom memiliki energi. Bila atom-atom berdekatan, maka elektron-elektron pada atom mengalami pergeseran/perubahan energi. E E E 2s pita energi E 1s atom tunggal Banyak atom berdekatan Pita Energi sekumpulan energi-energi yang besarnya tidak jauh berbeda. Banyak elektron pada setiap pita energi adalah ∑ e = 22l + 1N Keterangan l = bilangan kuantum orbital 0, 1, 2, 3, ... N = banyaknya atom yang saling berdekatan Pita Valensi PV pita energi terakhir yang terisi penuh elektron Pita Konduksi PK pita energi yang terisi sebagian atau tidak terisi elektron Celah Energi CE selisih energi pada pita valensi dan konduksi Contoh Na11 N 2p 6N 2s 1s 2N 2N Pada Na 11 pita konduksi terisi sebagian oleh sebab itu elektron-elektron pada PK akan bergerak bebas yang memungkinkan Na sebagai konduktor yang baik. Ditinjau dari konduktivitas zat pada yang berkaitan dengan pita energi dibagi sebagai berikut 1. 2. Konduktor • PV penuh • CE sempit • PK sebagian Isolator • PV penuh • CE lebar • PK kosong © SMA NEGERI 8 JAKARTA Halaman -6- 3. Semikonduktor • PV penuh • CE sedang • PK kosong SEMIKONDUKTOR Si, Ge Berdasarkan kemurniannya, semikonduktor dibedakan menjadi 1. Intrinsik • Semikonduktor yang belum dikotori • Bersifat isolator pada suhu rendah • Bersifat konduktor pada suhu sedang 300 K 2. Ekstrinsik • Semikonduktor yang telah dikotori golongan IIIA, VA • Bersifat isolator pada suhu rendah • lebih bersifat konduktor jika dibanding intrinsik Ada dua macam semikonduktor Ekstrinsik, yaitu a. Semikonduktor ekstrinsik tipe N - dibuat dengan mengotori kristal Si IVA dengan atom golongan VAAs, Sb, P Si elektron bebas Si As Si Si - Atom-atom golongan VA As disebut atom donor menyumbangkan sebuah elektron bebas - Pembawa muatan mayoritas elektron - Pembawa muatan minoritas hole - Untuk menjadi konduktor hanya dibutuhkan sedikit energi ± 0,05 eV b. Semikonduktor ekstrinsik tipe P - dibuat dengan mengotori kristal Si IVA dengan atom golongan IIIBoron, Al, Ga, I, Tl Si Si B Si hole Si - Pembawa muatan mayoritas hole - Pembawa muatan minoritas elektron © SMA NEGERI 8 JAKARTA Halaman -7- Kegunaan semikonduktor 1. Thermistor Thermally Sensitive Resistor - thermometer hambat yang sangat peka - dasar kerja kenaikan suhu, hambat jenis semikonduktor turun sehingga kuat arus naik. 2. Penunda arus 3. Pengukur intensitas cahaya - semakin besar intensitas cahaya semakin banyak fotonnya sehingga semakin besar energi yang dibawa berkas cahaya itu. Hal ini menyebabkan penurunan hambat jenis sehingga menaikkan kuat arus listrik pada rangkaian. 4. Penyaring - energi foton sinar inframerah sesuai dengan celah energi germanium, sehingga apabila sinar putih dilewatkan pada kristal Ge, hanya sinar inframerah saja yang lolos sedangkan sinar-sinar yang lain diserap. SOAL-SOAL LATIHAN Atom Berelektron Banyak, Molekul, Zat Padat dan Pita Energi 1. Salah satu konsep atom menurut Dalton adalah ... a. molekul terdiri dari atom-atom b. massa keseluruhan atom berubah c. atom tidak bergabung dengan atom lainnya d. atom tidak dapat membentuk suatu molekul e. atom dapat dipecah-pecah lagi 2. Percobaan hamburan Rutherford menghasilkan kesimpulan ... a. atom adalah bagian terkecil dari unsur b. elektron adalah bagian atom yang bermuatan listrik negatif c. atom memiliki massa yang tersebar secara merata d. massa atom terpusat di suatu titik yang disebut inti e. elektron mengelilingi inti pada lintasan tertentu 3. Berikut ini beberapa kesamaan antara model atom Rutherford dan model atom Bohr, kecuali ... a. elektron berputar mengelilingi inti dengan membebaskan sejumlah energi b. elektron merupakan bagian atom yang bermuatan negatif c. atom berbentuk bola kosong dengan inti berada di tengah d. secara keseluruhan atom bersifat netral e. massa atom terpusat pada inti atom © SMA NEGERI 8 JAKARTA Halaman -8- 4. Salah satu model atom menurut Bohr adalah ... a. elektron bergerak dengan lintasan stasioner b. energi foton yang terpancar berbanding terbalik dengan f c. tidak memiliki momentum anguler d. atom merupakan bola pejal bermuatan positif e. atom tidak dapat dipecah-pecah lagi 5. Dalam postulat Bohr tentang momentum sudut, tersirat sifat gelombang elektron, panjang gelombang λ elektron yang bergerak dalam suatu orbit berjari-jari r memenuhi ... . n bilangan bulat a. r = nλ b. 2πr = nλ c. 2πr = n2λ λ d. r = n λ e. 2πr = 2 n 6. Menurut Bohr, elektron bergerak mengelilingi inti hanya pada lintasan tertentu dan besarnya momentum anguler elektron pada lintasan itu adalah ... a. berbanding terbalik dengan tetapan Planck b. berbanding lurus dengan tetapan Planck c. berbanding lurus dengan tetapan Rydberg d. berbanding terbalik dengan tetapan Rydberg e. berbanding terbalik dengan momentum linier 7. Sebuah atom akan memancarkan foton, apabila salah satu elektronnya ... . a. meninggalkan atom itu b. bertumbukan dengan elektron lainnya c. bertukar tingkat energi dengan elektron yang lain d. mengalami transisi ke tingkat energi yang lebih rendah e. mengalami transisi ke tingkat energi yang lebih tinggi © SMA NEGERI 8 JAKARTA Halaman -9- 8. Menurut teori atom Bohr, elektron bermassa 9 × 10−31 kg pada atom hidrogen dengan jari-jari 0,53 Å akan mempunyai kecepatan sebesar ... 1c 1 c a. d. 100 b. c. 9. 2 1 5 c 1 13 e. 1 137 c c Pemancaran sinar ultraviolet pada atom hidrogen terjadi apabila elektron berpindah dari ... . a. lintasan 1 ke lintasan 2 b. lintasan 2 ke lintasan 4 c. lintasan 3 ke lintasan 2 d. lintasan 4 ke lintasan 1 e. lintasan 4 ke lintasan 2 10. Berdasarkan model atom Bohr, tetapan Rydberg 1, m−1 jika terjadi transisi elektron dari lintasan n = 4 ke lintasan n = 2 dipancarkan foton dengan panjang gelombang ... . a. 1,82 × 10−7 b. 2,43 × 10−7 c. 3,65 × 10−7 d. 4,86 × 10−7 e. 7,29 × 10−7 11. Jika konstanta Rydberg 1, maka panjang gelombang terbesar dari deret Balmer adalah ... a. 1215 Å d. 6563 Å b. 4050 Å e. 8752 Å c. 5127 Å 12. Energi foton sinar tampak yang dipancarkan atom hidrogen ketika terjadi transisi elektron dari kulit ke-4 ke kulit ke-2 adalah ... a. 13,6 eV d. 2,55 eV b. 6,8 eV e. 54,4 eV c. 3,4 eV 13. Jika energi elektron atom hidrogen pada tingkat dasar 13,6 eV, maka energi yang diserap atom hidrogen agar elektronnya tereksitasi dari tingkat dasar ke lintasan kulit M adalah ... . a. 6,82 eV d. 10,20 eV b. 8,53 eV e. 12,09 eV c. 9,07 eV © SMA NEGERI 8 JAKARTA Halaman -10- 14. Bila elektron berpindah dari kulit M ke kulit K pada atom hidrogen dan R adalah tetapan Rydberg, maka panjang gelombang yang terjadi besarnya ... 8 a. 9R 9 b. 8R 17 c. 9R 9 d. 17R 1 e. R 15. Elektron atom hidrogen model Bohr mengelilingi intinya dengan bilangan kuantum n, bila energi ionisasi atom itu 1 kali energi ionisasi atom itu bernilai 16 dalam keadaan dasarnya, maka nilai n itu adalah ... . a. 2 b. 4 c. 8 d. 16 e. 32 16. Dalam model atom Bohr, elektron atom hidrogen yang mengorbit di sekitar inti atom membangkitkan kuat arus listrik rata-rata sebesar 0,8 mA pada suatu titik di orbit lintasannya, bila besar muatan elektron adalah 1, C maka jumlah putaran per sekon elektron tadi mengelilingi inti adalah ... a. 5 × 1012 b. 5 × 1013 c. 5 × 1015 d. 5 × 1016 e. 5 × 1018 17. Pada model atom Bohr, elektron atom hidrogen bergerak dengan orbit lingkaran dengan laju sebesar 2, m/s, jika e = 1, c dan me = 9, kg, maka besarnya arus pada orbit tersebut adalah ... . a. 1,06 pA b. 1,06 nA c. 1,06 µA d. 1,06 mA e. 1,06 A © SMA NEGERI 8 JAKARTA Halaman -11- 18. Diagram di bawah ini menunjukkan empat tingkatan energi suatu atom logam -5,2 . 10-19 J -9,0 . 10-19 J -16,4 . 10-19 J -24,6 . 10-19 J dari pengolahan data di atas, dengan mengendalikan transisi ke tingkatan energi yang lebih rendah selalu mungkin, dapat ditarik kesimpulan bahwa 1. ada 6 garis spektrum yang mungkin terjadi akibat transisi elektron 2. panjang gelombang minimum spektrum emisinya 3. panjang gelombang maksimum spektrum emisinya 4. adanya komponen spektrum emisi yang merupakan sinar tampak 19. Perbandingan frekuensi yang dipancarkan foton apabila elektron pindah dari orbit 2 ke orbit 1 dengan elektron yang pindah dari orbit 4 ke orbit 1 adalah ... a. 4 5 d. 2 4 b. 4 2 e. 1 4 c. 4 1 20. Atom A dapat mengadakan ikatan ionik dengan atom B jika ... a. atom A dan atom B saling melepaskan sejumlah elektron terluar yang sama jumlahnya b. atom A dan atom B merupakan atom dari suatu unsur yang sejenis c. atom A dan atom B memakai sejumlah elektron secara bersamasama d. atom A dan atom B membentuk dipol-dipol listrik e. atom A melepaskan sejumlah elektron dan atom B menerima elektron tersebut 21. Ikatan antaratom dengan pemakaian bersama sejumlah elektron pada kulit terluar atom-atom penyusun disebut ... . a. ikatan Van der Waals b. ikatan ionik c. ikatan kovalen d. ikatan logam e. ikatan hidrogen © SMA NEGERI 8 JAKARTA Halaman -12- 22. Semikonduktor tipe-n memiliki ... a. tingkat energi akseptor yang terletak di dekat pita konduksi b. tingkat energi donor yang terletak di dekat pita valensi c. tingkat energi akseptor yang terletak di dekat pita valensi d. tingkat energi donor yang terletak di dekat pita konduksi e. tingkat energi donor yang terletak di bawah pita valensi 23. Pengotoran doping pada bahan semikonduktor intrinsik dimaksudkan untuk ... a. menurunkan daya hantar listriknya b. menurunkan resistivitasnya c. menurunkan harga jualnya d. memperbesar celah energinya e. memperbesar hambatan jenisnya 24. Semikonduktor intrinsik pada OK bersifat sebagai isolator, karena ... . a. jarak celah energi antara pita valensi dan pita konduksi terlalu besar b. tidak ada tingkat energi akseptor pada pita energi c. tidak ada tingkat energi donor pada pita energi d. tidak cukup energi bagi elektron untuk pindah ke pita konduksi e. tidak ada pembawa muatan yang diberikan dari luar 25. Yang berfungsi sebagai pembawa muatan mayoritas dalam bahwa semikonduktor ekstrinsik tipe n adalah ... a. elektron b. proton c. hole d. elektron dan hole e. proton dan hole 26. Beberapa sifat sinar-X adalah ... 1. dapat menghitamkan film 2. mampu menembus keping kayu 3. bergerak menurut garis lurus 4. menimbulkan ion-ion dalam udara yang dilaluinya © SMA NEGERI 8 JAKARTA Halaman -13-
– Mungkin sebagian kita ada yang menyukai pelajaran kimia. Dari senyawa atom terkecil hingga rumus kimia tersulit pun dapat kita bahas dalam artikel ini. Pada artikel kali ini kita akan bahas mengenai konfigurasi elektron. Mari simak penjelasannya di bawah ini. Pengertian Konfigurasi ElektronMacam – Macam Konfigurasi ElektronAturan atau Prinsip Konfigurasi ElektronPenulisan Konfigurasi ElektronKonfigurasi Elektron dan Bilangan KuantumRumus Konfigurasi Elektron = 2n2Contoh Soal Konfigurasi ElektronSebarkan iniPosting terkait Pengertian Konfigurasi Elektron Untuk bisa memahami pengertian konfogurasi elektron dapat dijelaskan menggunakan pemisahan makna kata tersebut. Konfigurasi merupakan suatu susunan atau aturan. Sedangkan Elektron merupakan suatu partikel sub atom yang memiliki muatan. Sehingga konfogurasi elektron dapat diartikan sebagai suatu susunan elektron-elektron pada sebuah atom. Susunan tersebut dapat mengikuti kaidah dan pola yang telah ditentukan. Jadi sebelum membahas tentang konfigurasi elektron lebih lanjut, hal yang harus diketahui adalah suatu atom memiliki kulit dan subkulit. Secara lebih jelas Konfigurasi elektron dapat diartikan sebagai suatu penataan atau penyusunan elektron ke dalam kulit dan subkulit atom. Berdasarkan pengertian diatas dapat dijelaskan bahwa terdapat dua cara dalam suatu penulisan konfigurasi elektron. Cara tersebut yaitu bisa berdasarkan kulit atom atau berdasarkan subkulit atomnya. Konfigurasi elektron ini berdasarkan kulit atom hanya berlaku untuk unsur golongan utama, yaitu unsur golongan IA sampai VIIIA. Macam – Macam Konfigurasi Elektron Konfigurasi Elektron juga memiliki beberapa macam – macamnya, yakni sebagai berikut 1. Kulit dan Subkulit Konfigurasi Elektron Model atom Bohr merupakan suatu dasar dari konfigurasi elektron dengan bentuk yang masih umum berkaitan dengan kulit dan subkulit. Konfigurasi elektron merupakan suatu himpunan atau kumpulan elektron-elektron yang menempati bilangan kuantum utama n yang sama. Dalam teori kimia dapat dijelaskan bahwa atom ke n dapat menampung 2n2 elektron. Misalnya, jika kulit pertama bisa menampung 2 elektron, kulit kedua 8 elektron, dan kulit ketiga 18 elektron. Sedangkan subkulit atom pada konfigurasi elektron merupakan suatu elektron-elektron yang memiliki bilangan kuantum azimut ℓ dalam suatu kulit. Nilai-nilai ℓ bilangan kuantum azimuth yakni 0, 1, 2, 3. Angka-angka tersebut akan melambangkan s, p, d, dan f. Setiap sub kulitnya maksimum dapat diisi dengan 22ℓ+1 elektron. Terdapat beberapa model dalam penentuan suatu konfirasi elektron. Model-model tersebut dapat dijelaskan sebagai berikut ini A. Model Panjang Konfigurasi elektron model panjang merupakan suatu konfigurasi yang paling umum. Konfigurasi elektron model ini ditulis dalam bentuk nomor urutan subkulit, dimana setiap sub kulit ini memiliki nama berupa angka berpangkat. Angka-angka tersebut dapat menyatakan jumlah elektron. Misalnya, hidrogen H hanya elektron yang berjumlahnya adalah 1 hal ini karena nomor atom H adalah 1. Sehingga konfigurasi elektron untuk hidrogen tersebut ialah 1s1. B. Model Gas Mulia Gas mulia memiliki nomor atom yang dapat direkomendasikan untuk mempersingkat penulisan suatu konfigurasi elektron. Tujuannya adalah agar penulisan konfigurasi elektron ini tidak terlalu panjang. Misalnya, pada konfigurasi elektron P jika menggunakan konfigurasi elektron model panjang dituliskan dengan 1s2 2s2 2p6 3s2 3p3, akan tetapi dengan menggunakan model gas mulia ini dapat dituliskan menjadi [Ne] 3s2 3p3. Hal ini karena Neon [Ne] juga merupakan salah satu gas mulia dengan nomor atom 10 dengan konfigurasi 1s2 2s2 2p6. C. Pengisian Elektron Aturan dalam penulisan konfurasi elektron ini tidaklah ditulis sembarangan, akan tetapi penulisannya harus berdasarkan kenaikan energi yang dialami elektron tersebut. Agar lebih mudah untuk bisa memahami model pengisian elektron ini kita dapat memperhatikan gambar konfigurasi elektron berikut ini. Berdasarkan gambar tersebut, maka urutan atau penyusunan dalam suatu pengisian elektron diawali dari 1s hingga 8s. Urutan pengisian elektron tersebut adalah sebagai berikut, 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, dan 8s. D. Konfigurasi Elektron Ion Dalam suatu konfigurasi elektron ternyata terdapat beberapa unsur yang terionisasi. Unsur-unsur yang dapat terionisasi ini jumlah elektronnya akan berubah berkurang. Misalnya, pada besi Fe memiliki nomor atom 26 dengan konfigurasi elektron [Ar]3d64s2. Akan tetapi penulisan konfigurasi elektronnya ini akan berubah jika Fe terionisasi menjadi Fe2+. Fe2+ ini menunjukkan Fe akan terionisasi sehingga mengalami pengurangan 2 buah elektron dari 26 elektronnya. Sehingga penulisan konfigurasi elektron Fe2+ yakni [Ar]3d6. Hal yang perlu dicatat jika sebuah unsur ini terionisasi, yang berkurang adalah elektron valensinya. Elektron valensi suatu unsur adalah suatu elektron terluar unsur tersebut. 2. Notasi Konfigurasi Elektron Notasi merupakan standar yang digunakan untuk mengetahui suatu konfigurasi elektron dari sebuah atom dan molekul. Dalam ilmu kimia untuk atom, notasinya juga terdiri dari urutan orbital atom dengan nomor elektron mengisi masing-masing orbital dalam format angka berpangkat. Misalnya pada hidrogen H memiliki satu elektron dalam orbital s kulit pertama, sehingga konfigurasinya ditulis 1s1. Litium ini memiliki dua elektron di subkulit 1s dan satu elektron di subkulit 2s sehingga konfigurasi elektronnya ditulis 1s2 2s1. Angka yang berpangkat 1 pada notasi tidak wajib dicantumkan. 3. Energi Dalam Konfigurasi Elektron Energi juga dapat dikaitkan dengan suatu elektron dalam orbital. Energi dalam sebuah konfigurasi ini sering kali mendekati jumlah energi di setiap elektron dengan mengabaikan interaksi antar elektron. Suatu konfigurasi yang memiliki energi terendah disebut keadaan dasar ground state. Sedangkan konfigurasi lainnya disebut dengan keadaan tereksitasi excited state. 4. Prinsip Aufbau Dan Aturan Madelung Dalam Konfigurasi Elektron Orbital yang diisi untuk meningkatkan nilai n+l. Dimana dua orbital ini memiliki nilai n+l yang sama. Berikut ini yaitu suatu urutan orbital pada konfigurasi elektron 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s, 5g, 6f, 7d, 8p, dan 9s 5. Penyimpangan Konfigurasi Elektron 1. Penyimpangan Konfigurasi Elektron Pada Orbiital d Penyimpangan pada orbital subkulit d ini dikarenakan orbital yang setengah penuh d5 atau penuh d10 itu akan bersifat lebih stabil dibandingkan dengan orbital yang hampir setengah penuh d4 atau hampir penuh d8 atau d9. tabel orbital d 2. Penyimpangan Konfigurasi Elektron Pada Orbital f Pada orbital f, sebagaimana dengan penyimpangan konfigurasi dalam orbital d, maka suatu konfigurasi elektron yang berakhir pada orbital f juga mengalami penyimpangan. 6. Konfigurasi Elektron Dalam Molekul Dalam molekul, konfigurasi elektronnya ini semakin rumit. Masing-masing molekul ini memiliki struktur orbital yang berbeda. Orbital molekul ini ditandai berdasarkan simetrinya. Misalnya pada O2 ditulis 1g2 1u2 2g2 2u2 3g2 1πu4 1πg2, atau setara dengan 1g2 1u2 2g2 2u2 1πu4 3g2 1πg2. Istilah 1πg2 juga mewakili dua elektron di dalam dua turunan orbital ke-π* antibonding. Aturan atau Prinsip Konfigurasi Elektron Atom memiliki suatu aturan-aturan dalam menentukan konfigursi elektronnya. Terdapat aturan dalam konfigurasi elektron yakni 1. Aturan Aufbau Aturan Aufbau merupakan salah satu aturan yang paling digunakan dalam suatu konfigurasi elektron. Aturan ini menjelaskan tentang suatu pengisian orbital fungsi matematika yang menggambarkan perilaku elektron yang dimulai dari tingkat energi rendah ke yang tingkat energi tinggi. Umumnya, elektron ini menempati subkulit yang energinya rendah lebih dulu. Bilangan kuantum utama n dan bilangan kuantum azimuth l ini dijadikan rujukan untuk mengetahui tingkat energi pada suatu sub kulit. Pada orbital, harga n + l ini mempengaaruhi tingkat energi pada subkulit tertentu. Sehingga jika harga n + 1nya memiliki nilai yang sangat besar maka tingkat energinya lebih besar. 2. Aturan Pauli Aturan Pauli ini disebut juga dengan Eksklusi Pauli. Sesuai dengan namanya sebuah aturan ini dikemukakan oleh Wolfgang Pauli 1926. Aturan ini juga berupa larangan yang menyatakan bahwa tidak boleh terdapat dua elektron dalam satu atom dengan empat bilangan kuantum yang sama. Hal ini setiap orbital yang sama juga memiliki bilangan kuantum n, l, m, namun, yang menjadi pembeda adalah bilangan kuantum spin s. Berdasarkan hal tersebut, dapat dijelaskan juga bahwa setiap orbital hanya bisa diisi 2 elektron dengan spin yang berlawanan. Hal ini karena jika elektron ketiga dimasukkan maka akan terdapat spin yang sama dengan salah satu elektron pada sebelumnya. 3. Aturan Hund Aturan hund ini dikemukakan oleh Friedrick Hund 1930. Dalam aturan ini dijelaskan bahwa suatu elektron-elektron dalam orbital-orbital suatu subkulit cenderung untuk tidak berpasangan. Jadi elektron-elektron baru bisa berpasangan jika pada subkulit itu sudah tidak ada lagi orbital kosong. Awalnya semua ruang orbital yang diisi dengan satu spin dengan arah panah keatas. Setelah semua ruang penuh maka diisi juga spin dengan panah kebawah. 4. Aturan Penuh Setengah Penuh Aturan ini juga berkaitan erat dengan hibridisasi elektron. Aturan ini menjelaskan bahwa suatu elektron ini memiki kecenderungan untuk berpindah orbital apabila dapat membentuk suatu susunan elektron yang lebih stabil untuk konfigurasi elektron yang berakhiran pada sub kulit d akan berlaku aturan penuh setengah penuh. Misalnya 24Cr = 1s2 2s2 2p6 3s2 3p6 4s2 3d4 akan menjadi 24Cr = 1s2 2s2 2p6 3s2 3p6 4s1 3d5. Berdasarkan contoh yang tadi dapat dikatakan bahwa jika 4s diisi 2 elektron maka 3d kurang satu elektron untuk menjadi setengah penuh. Sehingga elektron yang berada di 4s ini akan berpindah ke 3d. Penulisan Konfigurasi Elektron Konfigurasi elektron penulisannya ini berdasarkan teori atom dalam pembahasan mekanika kuantum. Kemudian, elektron-elektron ditempatkan pada suatu orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi yang paling rendah diisi terlebih dahulu. Cara pengisian orbital sama dengan pengisian pada suatu tingkat energi, dimana dalam pengisiannya sesuai dengan aturan Hund, tetapi jumlah elektron yang menempati ruang hanya dua saja satu elektron berpangan yang sesuai aturan Pauli. Pada gambar berikut ini merupakan contoh cara penulisan konfigurasi elektron yang benar. Penulisan suatu konfigurasi elektron dapat disingkat dengan menggunakan nomor atom unsur lain seperti yang telah dijelaskan pada model konfigurasi elektron. Konfigurasi Elektron dan Bilangan Kuantum Bilangan kuantum ini dapat ditentukan berdasarkan konfigurasi elektron, misalnya atom oksigen O bernomor atom 8, sehingga memiliki 8 elektron, suatu konfigurasi elektron atom oksigen adalah 8O 1s2 2s2 2p4. Konfigurasi elektron tersebut dapat diuraikan menjadi beberapa bentuk seperti dibawah ini 1 1s2 2s2 2px2 2py1 2pz1 2 1s2 2s2 2px1 2py2 2pz1 3 1s2 2s2 2px1 2py1 2pz2 Berdasarkan contoh tersebut maka dapat dilihat bahwa pada elektron terakhir dari atom oksigen memiliki bilangan kuantum sebagai berikut ini. 1 Bilangan kuantum utama, n= 2 2 Bilangan kuantum azimut, l= 1 3 Bilangan kuantum spin, s= –½ 4 Bilangan kuantum magnetik, m= –1, +1, atau 0 tidak pasti, semua orbital ini memiliki peluang yang sama untuk dihuni. Rumus Konfigurasi Elektron = 2n2 Contoh Soal Konfigurasi Elektron Konfigurasi elektron yang benar untuk 24 Cr yaitu ?? Penyelesaian Menurut aturan Aufbau untuk 24 Cr adalah … 1s2 2s2 2p6 3s2 3p6 4s2 3d4 Berdasarkan percobaan 1s2 2s2 2p6 3s2 3p6 4s1 3d5 setengah Penuh Untuk sub kulit d, terisi elektron setengah penuh atau penuh ternyata lebih stabil dibandingkan dengan aturan aufbau. Jadi, Konfigurasi elektron yang benar untuk 24 Cr yaitu 1s2 2s2 2p6 3s2 3p6 4s1 3d5 setengah Penuh Demikianlah penjelasan mengenai √ Konfigurasi Elektron Pengertian, Macam, Aturan, Penulisan, Rumus & Contoh Soalnya Lengkap Semoga dapat memberikan manfaat dan ilmu pengetahuan serta wawasan yang sangat luas untuk para pembaca. Terima kasih. Baca Juga Artikel Lainnya Bunyi Adalah Sinar Gamma Getaran Adalah Gelombang Adalah Induksi Elektromagnetik Tabel Sistem Periodik Unsur Kimia
Misalnyaorbital 2s dan 2p memiliki tingkat energi yang sama Demikian pula from MK 007 at Universitas Katolik Indonesia Atma Jaya – Paradigma atom mekanika kuantum menyatakan bahwa elektron subur puas orbital-orbital elemen. Atom-partikel tersebut menempati orbital sesuai dengan susunannya, atau nan disebut andai konfigurasi elektron. Kebiasaan n domestik konfigurasi elektron terdiri berasal tiga yakni Cara Aufbau, Aturan Hund, dan Larangan Pauli. Prinsip Aufbau Dilansir dari Encyclopaedia Britannica, Kaidah Aufbau dikemukaan maka itu fisikawan Denmark bernama Niels Bohr pada tahun 1920. Baca juga Ideal Partikel Bohr Pendirian Aufbau menyatakan bahwa sreg kondisi radiks, elektron akan menempati indra peraba elektron dengan energi yang makin kurang menuju energi yang kian hierarki. Prinsip Aufbau digambarkan intern diagram berikut aturan Aufbauf Sreg gambar terlihat bahwa konfigurasi elektron dengan Mandu Aufbau bergantung pada penjumlahan kodrat kuantum utama n dan kodrat kuantum azimuth l. Sa-puan energi orbital atom dari nan minimal abnormal ke yang minimum tinggi yakni 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, dan seterusnya. Maka elektron akan menempati sub alat peraba 1s malar-malar silam mentah menempati sub alat peraba 2s. Pada subkulit s hanya boleh ditempati oleh 2 elektron. Pada subkulit p hanya boleh ditempati 6 elektron. Pada sub alat peraba d hanya boleh ditempati 10 elektron, dan sreg indra peraba f hanya boleh ditempati 14 elektron. Baca sekali lagi Lengkap Atom Mekanika Kuantum Larangan Pauli Seperti namanya, Pemali Pauli melarang adanya sepasang elektron dengan kredit takdir kuantum spin yang sama dalam satu orbital. Misalkan suatu atom memiliki 2 elektron yang mendiami orbital 1s, maka konfigurasi elektronnya menurut larangan pauli ditunjukkan makanya gambar a, b atau c? silmi larangan pauli Jawabannya, konfigurasi elektronnya ditunjukkan maka itu bagan c, karena dagi elektron tidak dapat memiliki arah spin elektron nan sama. Kebiasaan Hund Dilansir pecah Chemistry LibreTexts, pada Aturan Hund, dijelaskan bahwa intern kondisi stabil, elektron akan menempati subkulit secara sendiri-sendiri dengan nilai kuantum spin yang sama. Baca juga Komplet Molekul Rutherford Jika orbital mutakadim terisi, barulah elektron tersebut berapasangan dengan elektro yang mempunyai spin berbeda. Misalkan lega atom oksigen yang memiliki 8 elektron. Konfigurasinya berdasarkan aturan Aufbau ialah 1s2 2s2 2p4. Hal ini berarti suka-suka 2 elektron yang meninggali subkulit 1s, 2 elektron menghuni subkulit 2s, dan 4 elektron menghuni subkulit 2p. Sementara menurut Aturan Hund, konfigurasinya bagaikan berikut Bersumber gambar tersebut terlihat bahwa elketron mengisi subkulit secara seorang-seorang dengan spin yang sama terlebih dahulu. Dapatkan update berita saringan dan breaking news setiap hari berpokok Mari bergabung di Grup Benang kuningan “ News Update”, caranya klik link kemudian join. Anda harus install tuntutan Telegram bahkan dulu di ponsel. klBOD.